Modelling of river discharges using neural networks derived from support vector regression
نویسندگان
چکیده
Neural networks are often used to model complex and nonlinear systems, as they can approximate nonlinear systems with arbitrary accuracy and can he trained from data. Amongst the neural networks, Associative Memory Networks (AMNs) are oflen used, since they are less computation intensive, and yet good generalization results can he obtained. However, this can only be achieved if the structure of the AMNs is suitably chosen. An approach to choose the structure of the AMNs is to use the Support Vectors (SVs) obtained from the Support Vector Machines. The SVs are obtained from a constrained optimization for a given data set and an error bound. For convenience, this class of AMNs is referred to as the Support Vector Neural Networks (SVNNs). In this paper, the modelling of river discharges with rainfall as input using the SVNN is presented, from which the nonlinear dynamic relationship between rainfall and river discharges is obtained. The prediction of river discharges from the SVNN can give early warning of severe river discharges when there are heavy rainfalls.
منابع مشابه
STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملAssessment the Performance of Support Vector Machine and Artificial Neural Network Systems for Regional Flood Frequency Analysis (A Case Study: Namak Lake Watershed)
Flood discharge estimation with different return periods is one of important factors for water structures design and installation. On the other hand, a lot of rivers existing in Iran watersheds have no complete and accurate hydrometric data. In these cases, one of the suitable solutions to estimate peak discharges with different return periods is the regional flood analysis. In this research, 5...
متن کاملOn Structure Selection of Radial Basis Function Networks
The orthogonal least squares algorithm (OLS) and the support vector regression (SVR) are two popular approaches to choose the structure of the Radial Basis Function Network (RBFN). The former is derived based only on the modelling errors, whilst the latter also on the model complexity. A comparison of the generalization results of networks selected from the OLS and the SVR is presented here usi...
متن کاملPermeability estimation from the joint use of stoneley wave velocity and support vector machine neural networks: a case study of the Cheshmeh Khush Field, South Iran
Accurate permeability estimation has always been a concern in determining flow units, assigning appropriate capillary pressure andrelative permeability curves to reservoir rock types, geological modeling, and dynamic simulation.Acoustic method can be used as analternative and effective tool for permeability determination. In this study, a four-step approach is proposed for permeability estimati...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003